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S U M M A R Y  
Asymptotic solutions representing slowly varying wavetrains are obtained for two-dimensional irrotational surface 
waves of finite amplitude on water of finite depth (Stokes waves) by means of a formal perturbation procedure. The 
resulting partial differential equations for wavenumber, frequency, amplitude, mean waveheight and mean velocity 
are identical with those found by Whitham [1], [2] using the averaged Lagrangian density method. 

1. Introduction 

Asymptotic solutions in the form of slowly varying wavetrains, i.e. waves for which the wave- 
number, frequency, amplitude, etc. change only by a very small fraction of themselves within 
one period or one wavelength, have been obtained recently for Stokes waves by Whitham [1], 
[2] who used his averaged Lagrangian density method. In this paper we will derive the same 
results (a set of pertial differential equations for wavenumber, frequency, amplitude, mean 
waveheight and mean velocity) by means of an asymptotic representation of slowly varying 
wavetrains, which has proved to be also successful in the case of non-linear shallow water 
waves (Hoogstraten .[3]). 

The general formulation of the boundary value problem for the velocity potential of two- 
dimensional irrotational surface waves of finite amplitude on water of finite depth (Stokes 
waves) is as follows: within the fluid, bounded by the free surface y = t/(x, t) and the bottom 
y = -ho,  we have a velocity potential ~(x, y, t) with v = V~, satisfying the Laplace equation: 

~xx+ ~yy = O. (1.1) 

On the free surface the kinematical condition should be satisfied: 

r h + t/x [ ~ ] r  = , -  [ ~ , ] ,  =, = 0.  (1.2) 

and the condition of constant pressure: 
g ~ + [ $ ,  1 - 2  $2 +~(~x + ,)]y=~ = constant (=~).  (1.3) 

At the bottom y = - h o  holds the condition: 

[~,],= -ho = 0. (1.4) 

We are interested in finding asymptotic solutions to this problem representing slowly varying 
wavetrains with wavelength of order unity. Taking K -  1, with K ,> 1, as a measure for the slow 
variations of amplitude, frequency, etc., it is useful to introduce stretched coordinates x* = x/K, 
t* =t/K. The vertical coordinate y is left undisturbed because the wave propagation is in the 
x- and t-direction only. 

After omission of the asterisks the boundary value problem for ~(x, y, t) is transformed into 

~xx+K2~yy = O ,  for - h  o <y<~/(x, t) 

= o.  

1 - - 2  K2~2 K 2 K [  , ] , = , + g  

+ = , -  K 2 = ,  = 0.  

where the Bernoulli constant ~ has been absorbed into the potential ~. 

(1.5) 
(1.6) 
(1.7) 
(1.8) 
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46 H. W. Hoogstraten 

2. Asymptotic Expansion with Respect to K 

in terms of the stretched coordinates x and t each unit contains a large number (of order of 
magnitude K) wavelengths and periods respectively. Defining a phase function S(x, t) by 
requiring that the deriw.five of ~ or t/normal to a wavefront S(x, t) = constant is large of order 
K compared to the tangential derivative, we may introduce the following asymptotic expansion 
for a slowly varying wavetrain: (see also [3]) 

~(x, y, t)= KO (x, t) + q~[KS(x, t), x, y, t] + Ol (x, t) + 

1 1 (1 )  
+ g z [ K S ( x , t ) , x , y , t ]  + -KO2(x,t)+O , (2.1) 

1 
V[KS(x,  t), x, t] + 0  (K-~--2) (x, t)= v [KS(x, t), x, t] + ~ (2.2) 

X / 

with ,b, Z, U and V bounded functions for all values of x, y and t. The functions ~, Ol and ~P2 
account for the unbounded parts of,~ resulting from the presence of a mean velocity and from 
the absorption of the Bernoulli constant into ~. However, the derivatives of these unbounded 
terms should be bounded again for all values of x, y and t. 

Defining the local wavenumber x =  Sx and the local frequency co = - S ,  and introducing 
the notations : 

p= KS(x, t), /3= Ox, 7 = - Ot, /3~= 0,:~, Y~= - O , t ,  ( i= l ,  2) 

we insert asymptotic expansions (2,1) and (2,2) into boundary value problem (1.5)-(1.8) for 
and r/. Collecting powers of K and equating their coefficients to zero successively, the highest 
power of K yields a boundary value problem involving ~b (p, x, y, t), U (p, x, t) and ~ (x, t): 

1r 2 I~pp--[- ~yy = O, 

~r = 0 ,  

gv+(/3~-co)%+ ) ( ~ + ~ : ~ g )  = ~-1~2.  

(/3~- co) v, + ~ v,  % -  ~, = 0. 

for - h  o < y < U(p,x, t), (2.3) 

on y = - h o ,  (2.4) 

on y = U(p, x, t), (2.5) 

on y = U(p, x, t), (2.6) 

whereas the next power of K gives a boundary value problem containing the second order 
terms Z(P, x, y, t), V(p, x, t) and i/Jl (x , t): 

x2 Zpv + Zyr = - ~:~ ~ p -  2 ~ p x -  fix, 

Z x = 0 ,  

for - h o  < y < U(p, x, t), (2.7) 

on y = - h o ,  (2.8) 

g [ _ fOl~ py ... 1_ (/3 Av lgl~)p) Kl~ py ..[_ l~)y ~ yy ._[_ g ] Af_ /~p [ _ OO ~- l~ (/3 .-~- lo~J) p) ] ...~ l~)y ~y--~-/3/31--  ])1 = 

= - ~ t -  (/3 + lc~p) ~ ,  o n  y = U (p, x, t ) ,  (2.9) 

v.[-co+ ~(/3+ x%)] +~2 v, z~- z,+ v[~ 2 v ~ , -  ~ . ]  +/31 ~vp = 
=-v,-~v~x-(/3+~,)Vx, on y=v(v,x,t). (2.1o) 

Note that in these problems the free surface condition has to be satisfied on the curve y = U (p, 
X, t). 

The boundary value problem for ~, U and ~ is seen to be exactly identical with the problem 
for the uniform periodic wavetrain which is given in the Appendix by equation (A.2) and 
boundary conditions (A.3), (A.4) and (A.5) with x0 replaced by p. The solution is given as two 
asymptotic power series in e =/ca for �9 and U, where a is a measure for the amplitude of the 
wave. Hence the leading terms �9 and U of the asymptotic expansion for the slowly varying 
wavetrain may be given up to terms of order e 2 : 
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qb(p, x, y, t )=  A1 cosh [~C0o+y)] sin p + A  2 cosh [2~(ho+y)]  sin 2p+O(e3),  (2.11) 

U (p, x, t )= b + a cos p + a 2 cos 2p + O(e3) , (2.12) 

with A1 = 0 ( 0 ,  A2=O(e  z) and az=O(e  z) defined by equations (A.14), (A.21) and (A.22)from 
the Appendix. 

The leading terms of the asymptotic representation for slowly varying wavetrains represent 
locally a uniform wavetrain and contain six slowly varying parameters, viz. the wavenumber 
~c (x, t) and frequency co (x, t), which are of order unity, the amplitude a (x, t), which is of order ~, 
and the mean waveheight b (x, t), the mean velocity fl (x, t) and the pseudo-frequency y (x, t), 
which are of order ez. In the Appendix two relations between these quantities have been 
obtained, viz. dispersion relation (A.23): 

gbtc 2 D O 
co= coo(X)+flK + 20)0 coshZ~ch ~ + lgtr coG' 

where 

9 tgh 4 Kho - 10 tgh 2 ~cho + 9 
cooz(•) = g~c tgh ~cho, Do = 8 tgh 3 Kh o 

(2.13) 

and pseudo-dispersion relation (A.24) : 

gKa z 

gb = 7 2 sinh 2~ch o " (2.14) 

Furthermore two relations follow from the definition of ~c, co, fi and 7 : 

~ct+co x =  0 ,  f l t+Tx= 0.  (2.15a, b) 

The two remaining equations will be obtained in the next section by imposing conditions of 
boundedness on the second terms Z(P, x, y, t) and V(p, x, t) of the asymptotic representations 
(2.1) and (2.2) for slowly varying wavetrains. 

3. The Boundary Value Problem Involving Z(P, x, y, t), V(p, x, t) and ~l(x ,  t) 

We will proceed by expanding Z and V in perturbation series with respect to ~ and formulating 
the boundary value problems for the first and second order terms. In doing so we will meet 
secular terms that have to vanish in order to guarantee boundedness. This will provide the 
two remaining relations between the six slowly varying parameters of the problem. 

We introduce the following expansions: 

)~(p, X, y, t)~--- )~I(P, X, y, t)'J-Z2(p , X, y, t)'~-O(g3), 
V(p, X, t) = Vl (p, X, t) + V2(p, X, t) + O(~3) , 

where the subscript 1 denotes terms of order e and the subscript 2 terms of order ~2. Further- 
more we recall that �9 and U were expanded as follows: 

4(p, x, y, t ) =  r x, y, t)+~2(p, x, y, t)+o(~3),  
u (p, x, t) = Ul (p, x,  t) + U2 (p, x, t) + o (e3) , 

where the subscripts 1 and 2 again denote terms of order e and e 2 respectively. Noting that fl, 
7, fll and 71 are quantities of order e2, the above expansions are inserted into the boundary 
value problem for Z and V. For the terms of order e the following problem is obtained : 
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48 H. W. Hoogstraten 

l('2~lpp -~- Z lyy = --  Kx i~lp --  2rcq~ ~vx , 

Z~, =: 0 ,  

gVl - (Do~lv  = - ' ~  l, , 

(Do Vlv+Zl~ = Ul~, 

for - h o  < y < 0 ,  (3.1) 

on y = - h o ,  (3.2) 

on y = 0,  (3.3) 

on y = 0.  (3.4) 

Notice that the expansion with respect to ~ implies that the free surface conditions are to be 
satisfied on the line y = 0, and that )~1 and V1 satisfy a linear, inhomogeneous boundary value 
problem. 

For the second order terms Z2 and V2 we obtain the problem: 

ls '}- )~2yy = --  lZx ~2p  --  2~c~2vx -- f i x ,  for - h o < y < 0,  (3.5) 

X2r=0 ,  on y = - h o ,  (3.6) 

oV2 -- (DOZ2p ~--- ~ ~ lpy "2F (DO U1Zlpy - ls l.p)~ lp -~- 311 + 

- - ~ l y Z l y - - ~ 2 t - - l s  on  y = 0, (3.7) 

(Do V2p--~ g2y = K2 ~ lp Vlp--~ If.2 U l p Z l p  - U 1 Z l y y -  V1 ~lyy-~- 

+ U2t+~cUlt, f f ) ix+tc~ipUlx ,  on y = 0. (3.8) 

At first let us consider the boundary value problem for )~ 1 and  V1. Elimination of V1 from free 
surface conditions (3.3) and (3.4) and using the explicit expressions for # l  and U~ yields the 
boundary condition for Xl : 

(DA (DO 
g )~tPP+)~IY = U~, + -~- #lp, = ~o cos p ,  on y = 0,  (3.9) 

with the abbreviation: 

(Do a ( A  ~cosh~ho)=(Do  a a(~o) 
% = a , + - g - ~  a at " 

The differential equation for )~ becomes: 

rc2Zl~p+Ziyr = ~l cosh[rc(ho +y) ]  cos p+o~2(ho+y ) sinh [rc(ho +y) ]  cos p ,  (3.10) 

where we have put: 

oq = - t q ,  A 1 - 2 ~ : A i x ,  ~2 = -2~c t%Ai ,  

and where A1 is defined by equation (A.14). 
A particular solution of equation (3.10) satisfying the bottom condition and which is bounded 

,in the strip - h o  < y < 0 ,  is given by the periodic function: 

= (y + ho) sinh [~ (h o + y)] cos p.  Z~ e) ~ (y + ho) 2 cosh [-~(ho + y)] cos p + 2xx 

Putting Z~ = ) ~ e ) + ~ ,  then ~ satisfies the equation 

~22'1~p+ Z1 . = O, 

with boundary conditions 

[Xlr]r=-ho=0 and ~ g Z l p .  )~i = a c o s p ,  
y=0 

where we have put 

(D~ cq e4-~-2~ ct2 = ao + g \ 2~  ho sinh ~ h o -  ~ ho cosh ~cho + 
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Non-linear dispersion of Stokes waves 49 

It may be verified that this boundary value problem for ~ has a solution of the form : 

Ca {p sin p cosh [tc (y + ho)] - ~c(y + ho) cos p sinh [tc(h o + y)] }, 

with C a constant. This solution is not bounded for large p and hence the term a cos p in the 
free surface condition for ~1 must vanish. This leads to the equation: 

COo 0 a ~  sinh z ~cho 
a . . . .  a Ot \C~o] ~ch~ cosh ~ch~o + Alh~ cosh ~cho + 

+ A 1~ (sinh ~ho + Kho cosh ~ho) = O. 

After considerable manipulation this equation reduces to the equation of conservation of. 
"energy" E =  a2/~Oo : 

~-T + [~;(~:)E] = 0.  (3.11) 

For 22 we have the equation: 

1s ZZpp At- ZZyy = -- fix -- 21r cosh [-2K(h o + y)] cos 2p + 

{A2 cosh[2K(ho+y)]} cos 2p. (3.12) -4 y x 

The inhomogeneous term of equation (3.12) contains terms with cos 2p and a term - f ix  which 
is constant with respect to p. The terms with cos 2p cause no difficulties but the constant term 
may induce unbounded terms in X2 as will appear below. 

Furthermore we observe that the inhomogeneous terms in the free surface conditions (3.7) 
and (3.8) are made up by terms containing the factor cos 2p and terms that are constant with 
respect to p. Eliminating V2 from conditions (3.7) and (3.8), it is clear that only the constant 
terms in the righthand side of condition (3.8) will remain in the resulting free surface condition 
for Z2, because the constant terms of condition (3.7) vanish by differentiation with respect to 
p. Writing condition (3.8) as: 

(VI~lv..[_ Ul~(lp) + U 2 t + l C U l p ( ~ l x - ~  (DoV2p + Z2y = K 2 ~p  

+ ~ t p U l x +  Ul(~cx~ap+2~tpx),  on y = O, 

it is seen that the constant term in the righthand side is independent of Z1 and V~. Schematically 
we have the following boundary value problem for )/2 : 

x2 Zzpp + )~2yy = - f i x +  [.-.] cos 2p, 

Z2y -~ O ,  

~ -  ZZpp + Z2y = b, + �89 (A ix cosh xho + A 1 xx ho sinh ~cho)+ 

+�89 1 cosh xho+ [...] cos 2p, 

- h o < y < 0 ,  

on y = - h o , 

on y = 0 .  

The terms with cos 2p do not give rise to unbounded terms in Z2 and need not be considered 
further. If only the constant parts of the inhomogeneous terms are considered and a function 
Z2 is introduced by: 

2 
Z2 -�89 +Z2,  

the resulting boundary value problem for Z"~2 is similar to that for ~"~, only with the term a cos p 
in the free surface condition replaced by the constant term 

cr = flxho + bt+�89 cosh ~ho + A~ ~xho sinh ~ho) +�89 cosh tcho. 
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50 H. W. Hoogstraten 

Introducing the complex conjugate ((p, y) of X2 (P, Y) and putting 

f (z)  :: Z2 (P, Y) + i((p, y) ,  z = P- + iy ,  
N. 

then f (z)  is an analytic function of z which has to be bounded in the strip - ho_--- Im z__< O. 
The free surface condition for Z2 may be written as" 

~ --b-co; 2 
g X2PV~-~(2y pv--lE(p a ,  on y 0. 

Integration with respect to p then gives the condition: 

co2 Z2v-  ~c( = ap + constant, on y = 0. 
9 

Now both Z2p and ( should be bounded for all p on y = 0, so ap is a secular term. Hence a = 0, 
which leads to the equation: 

eb aft 0 (9_aZK~= 
a--)- + h~ ~x + ~x k - ~ o  J 0. (3.13) 

This equation completes the set of six equations (2.13), (2.14), (2.15a, b), (3.11), (3.13) for the 
slowly varying functions ~(x, t), co(x, t), a(x, t), b(x, t), fl(x, t) and V(x, t). This set of equations 
may be reduced to a set of four equations by elimination of co(x, t) and 7(x, t): 

a/r a l c  O g bK2 E l 
a~- + ~xx o+fl~ + 2(o0 cosh21ch ~ + �89 = O, 

aE 
+ = 0 ,  

a-t- + ~ x  b +  2sinh2xho = 0 ,  

ab 
a--t- + "[fiho +�89 -- O, 

which is in exact agreement with the results ofWhitham [ 1], [2], and for a detailed investigation 
of these equations we refer to these two papers of Whitham. 

Appendix: Periodic Progressive Stokes Waves 

In this appendix we will derive the periodic progressive wavetrain solution of the original 
boundary value problem given by equation (1.1) together with boundary conditions (1.2), (1.3) 
and (1.4), which is expressed in the non-stretched coordinates x, y, t. Many authors ,starting 
with Stokes in 1847 have given solutions of this problem which are of the form : 

~(x, y, t) = ~ ( x - c t ,  y) , ~l(x, t) = r l ( x - c t  ) , 

where ~ and ~/are periodic functions of the phase 0-- x - ct. See for instance Lamb [4], Bowden 
[5.] and Wehausen and Laitone [6]. In fact the assumption of periodicity of ~ in 0 does not 
allow a mean velocity fl in the x-direction. Such a mean velocity would give rise to a term fix 
in ~ which is not periodic in 0. In this Appendix a term fix is added to ~ and also the constant 

occurring in the condition of constant pressure on the free surface (equation 1.3) is absorbed 
into ~ by adding a term - Vt. Hence we will construct a solution of the problem of the following 
form: 

~(x, y, t )= f l x - 7 t  +rp(x=ct,  y) ] (A.1) 
,1 (x, t) = ( x -  a )  
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Non-linear dispersion of  Stokes waves 51 

with cO and 11 periodi c functions of the phase 0 = x - c t .  This more general representation is 
also used by Whitham [1], [2], who proceeds by applying an averaged Lagrangian principle. 
In the present case we will use a perturbation series approach. 

Insertion of equations (A.1) into the boundary value problem for ~ gives a boundary value 
problem involving q~(0, y) and r/(0): 

(Poo + (Pyy = O, 

tpy= 0,  

(fl-c)~lo + ~lo(Oo-~O r = O, 
1 2 + ( f l -  + + ) = " , 

for - h o  < y < t/(0), (A.2) 

on y = - h o ,  (A.3) 

on y =  q(0), (A.4) 

on y = q(O). (A.5) 

An exact explicit solution of this problem is not available and all investigations of Stokes 
waves are concerned with finding series expansions of (0(0, y) and q(0) in powers of a small 
parameters e = xa, where ~ is the wavenumber per 2n and a is a measure for the amplitude of 
the wave. This means that we are considering waves of moderately small amplitude and given 
wavelength 2n/~, and also we suppose that the various functions and constants occurring in 
the boundary value problem for ~o(0, y) and q(0) can be expanded as follows: 

q~(0, y ) =  er  (0, y )+  e2~2(0, y)+e3~a(O, y)+ .... 

(0) =  vl(0) + u2(0) + v (0) + . . . .  

e = co/~c = Co + eel + e2c2 + eac3 +. . . ,  

7 = g270-t- g371 -t- . . .  , f l=g2f lO"~g3f l l -~  . . . .  

The first terms in the series for (o(0, y) and t/(0) are assumed to be of order e, corresponding 
to linear waves of infinitesimal amplitude. Furthermore, the constants fl and 7, which are 
quantities that are absent in the linear theory, are assumed to be of order g2 and hence only 
play a role in the higher order perturbations accounting for the non-linear effects. 

It is seen from equation (A.2) that all functions ~i(0, y) satisfy the equation : 

~i00+ ~iyr = 0 ,  i = 1, 2, 3 . . . .  , (A.6) 

with boundary condition 

�9 i y = 0  on y = - h o .  (A.7) 

The free surface conditions (A.4) and (A.5) are now expanded straightforwardly with respect 
to e and yield the following conditions for the first order terms ~1 and U1 to be satisfied on 
y = 0 :  

coUlo+q~ly=O, gU 1 - c o ~ 1 o = 0 .  

The second order terms ~2 and U2 satisfy on y = 0: 

CO U20 -IF ~ 2y = -- c1 U l o b  U l o ~  lo - U 1 �9 lyy , (A.8) 
aN2 -- Co~12o ~- cl  I~10 q- Co g l  ~ lOy -1(17I)2o "~ ~2y)  _~ 7 0 .  (A.9)  

The third order terms ~3 and Us satisfy on y = 0: 

U t 2 c o U 3 0 - ~ 3 y  ~--- --Cl U20-~ ( f l o - c 2 ) U l o -  U l ~ 2 y y -  2 ~ l y y - ~ U 1  ~lyyy"~ 

+ U20 ~10 + U~ Ulo �9 1or + Ulo ~20, (A. 10) 

gU3__Co~3o 1 2 U2~lo  _ ~ l o ( U l ~ l O y + ~ 2 0 ) +  ~ Co U1 ~) 20y + 2 Co U 1 ~ 1 oyy -~ Co 

-~ l y (U lqbar r+~2y )+ea (~2 o + U l~ lo , ) - ( f l o - e2 )~ lo + 7 1 .  (AA1) 

The first order problem for ~1(0, y) and UI(0) is solved by: 

e~,(0, y ) =  A, cosh[tc(ho+y)] sin ~c0, (A.12) 
eU, (O) = a cos K0. (A.13) 
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The unknown constants A 1 and c o are expressed in terms of a and x by substitution of equa- 
tions (A.12) and (A.13) into the free surface conditions for ~1 and U1, yielding: 

aco (A.14) 
A1 = sinh xho ' 

and the dispersion relation for linear waves: 

Co 2 = 9 tgh ~cho. (A.15) 
/s 

The free surface conditions (A.8) and (A.9) for ~2 and U2 now become respectively: 

co U2o + q~ 2y = cl sin xO-  co cotgh xho sin 2xO , (A.16) 

gU2-  Co~2o = CoC~ cotgh xho cos x0 + Vo +�88 2 (1 - cotgh 2 ~cho) + 

+ �88 C2o (3 - cotgh 2 xho) cos 2x0. (A. 17) 

Elimination of U2(O) gives one condition for ~2(0, y) on y = 0: 

c~ ~200+ ~2r = 2Cl sin xO-co cotgh xho sin 2xO+ 
# 

+(1 t + sin 2~c0. (A.18) 
g 2 sinh 2 tch 0 

The general representation for ~2(0, y) having period 2n/x and satisfying equation (A.6) with 
boundary condition (A.7) is: 

~2( 0, Y)= Co+ ~, ej cosh[jx(y+ho)] sinjx0.  (A.19) 
j = l  

Upon calculation of the unknown coefficients ej by substitution of equation (A. 19) into (A. 18), 
it is seen that the term withj  = 1 automatically satisfies the homogeneous free surface condition 

4 
- -  ~ [ } 2 0 0  "~ I~2 r ~--" 0 on  y = 0 ,  
9 

as a result of equation (A.15). Hence the term with sin ~:0 in the righthand side of (A.18) can 
never be produced by the periodic solution (A.19). So we put cl = 0. Homogeneous solutions 
of the form 

el cosh [x(ho + y)] sin x0 (A.20) 

can be added to ~2(0, y) of course, but defining the amplitude a by fixing A 1 = aco/sinh xho 
as the coefficient of cosh [x (h o + y)] sin x0 in the expansion of q~(0, y), then terms such as (A.20) 
need not be taken into account in the higher order perturbations ~2(0, y), ~a(0, y), etc. 

The solution of the second order problem is then: 

gz ~2  (0, y) -- A 2 c o s h  [2tc (ho + y)] sin 2x0, 

where A 2 is found by satisfying condition (A.18): 

A2 = a a2C~ 
sinh4Kh~ = 0(52). (A.21) 

The corresponding second order approximation e 2 Uz(O) to the free surface elevation is cal- 
culated from equation (A.17): 

~2 U2(0 ) = b+a z cos 2~:0, 

where the first approximation b to the mean height is given by 
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b - e27~ xa2 - O(e:), 
g 2 sinh 2•ho 

and a2 is given by: 

a2 = �88 2 3 - t g h  2 Kho _ O(e2 ) (A.22) 
tgh 3 tcho 

In order to obtain the second order term eZe2 in the dispersion relation we have to investigate 
the secular terms, viz. terms containing sin x0, in the boundary condition for the third order 
problem. By substitution of the first and second order terms into conditions (A.10) and (A.11) 
the third order free surface conditions are found to be of the form: 

coUao+q~ay = #1 sin/s sin 3~:0, 

gU3--COI~30 = 0" 1 COS /s O" 3 COS 3 / C 0 + y l  , 

with constants #~ and 0-1 given by: 

e3#t = - a3tc3(fl o -  c2) - a~cZA2 cosh 2~h o - 3 a 2 ~ a A 1 sinh ~h 0 + 

-tc2Al(�89 cosh ~cho, 

e30.1 = [2aeoA2x2 1 2 3 - iaA l x ] sinh 2xho+ [-~ coa2 A l x a (fo - c2)a2~c3 A1] cosh xho + 
+ [cobA~ ~:2 +�89 x 2] sinh xho-A1A2 x2 cosh 3xho. 

The constants #a and o-3 will not be needed because only terms with sin xO and cos ~:0 will 
give rise to secular terms. Elimination of U3 (0) gives a condition for ~3 (0, y) only, which has 
to be satisfied on y =  0" 

c--~q~3~176 # ~ + 9  a~se~ sin x 0 + [ # 3  + 3 a 7 c ~  1 sin 3to0. 

By a similar reasoning as before it follows that no periodic solution for ~3(0, y) can satisfy 
this condition with the term with sin x0 included in the righthand side and hence we have: 

0-1/s o 
# 1 +  - 0 .  

9 
After considerable manipulation this relation reduces to: 

9b 
 2(c2-fo) = + 2% cosh2~cho Co 

with the abbreviation: 

9 tgh 4 x h o - 1 0  tgh 2 ~cho+9 
D o = 

8 tgh 3 tcho 

Summarizing, we have the following results up to the second order of approximation : 

~(x, y, t) = fix - 7t + A a cosh [to (h o + y)] sin K0 + A 2 cosh [2~: (h o + y)] sin 2~0 + O(ea), 

tl(X, t) = b+a cos ~.O+a2 cos 2~c0+ O(e 3) 

where the constants A1, A2 and a2 are given by: 

_ aco a20~o 
A1 sinh ~h o ' A2 = ~ sinh4~ho ' 

1 2 3 - t g h  2~h o 
a 2 = ~xa ~ . 

Furthermore we have the dispersion relation 

gb~c 2 D O 
e)(x) = tcc = COo(~C ) +f~c + 2O9o cosh2~cho + �89 --Co + O(e3) ' (A.23) 
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with o9o2(~:) = gx tgh xho, and  also a "pseudo" -d i spe r s ion  r e l a t i on :  

glca 2 
gb = 7 + O(e3). (A.24) 

2 sinh 2xh0 

So it is seen tha t  the  un i fo rm wave t ra in  so lu t ion  depends  on  six pa r a me te r s  a, ~:, o9, b, fi and  7 
wi th  two re la t ions  connec t ing  t hem so tha t  four  of  t hem may  be chosen  independent ly .  
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